Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations
نویسندگان
چکیده
The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-ofthe-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.
منابع مشابه
Aerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities
Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...
متن کاملComparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol p...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملAbstract Title of Dissertation: Investigating Aerosol Effects on Clouds, Precipitation and Regional Climate in US and China by Means of Ground-based and Satellite Observations and a Global Climate Model
Title of Dissertation: Investigating Aerosol Effects on Clouds, Precipitation and Regional Climate in US and China by Means of Ground-based and Satellite Observations and a Global Climate Model Feng Niu, Doctor of Philosophy, 2011 Directed by: Dr. Zhanqing Li Department of Atmospheric and Oceanic Science/ Earth System Science Interdisciplinary Center Aerosols affect climate by scattering/absorb...
متن کاملAn overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts
[1] The International Global Atmospheric Chemistry Program (IGAC) has conducted a series of Aerosol Characterization Experiments (ACE) that integrate in situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles. ACE-Asia, the fourth in this series of experiments, consisted of two focused components: (1) An int...
متن کامل